Search results for "magnetic dichroism"

showing 4 items of 4 documents

Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers

2011

This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co${}_{2}$FeAl layer buried beneath the IrMn layer. A pronou…

420Materials scienceMagnetic momentCondensed matter physicsAnalytical chemistryDichroismengineering.materialCondensed Matter PhysicsHeusler compoundElectronic Optical and Magnetic Materialscircularly polarized x-raysCondensed Matter::Materials ScienceX-ray photoelectron spectroscopyFerromagnetismX-ray magnetic circular dichroismmagnetic dichroismangular-resolved hard x-ray photoemissionengineeringThin filmExcitationPhysical Review B
researchProduct

Magnetic properties of Co2Mn1−xFexSi Heusler alloys

2006

Co2Mn1−xFexSi Heusler alloys with Fe concentration x = 0–0.4 as prepared by arc melting show a L21 long range order for all Fe concentrations. Magnetic properties of Co2Mn1−xFexSi Heusler alloys were investigated by magnetometry and circular magnetic dichroism. The magnetization of the Fe doped Heusler alloys is in agreement with the Slater–Pauling values expected for half-metallic ferromagnets. Element specific magnetic moments as determined by x-ray absorption using the total electron yield method are in disagreement with theoretical predictions for x = 0 but approach the predicted values as the Fe concentration increases. Surprisingly small Fe concentration increases the magnetic moments…

Acoustics and UltrasonicsCondensed matter physicsMagnetic momentMagnetic circular dichroismChemistryMagnetometerElectronDichroismCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionMagnetizationFerromagnetismlawCircular magnetic dichroismJournal of Physics D: Applied Physics
researchProduct

Local structure and magnetization of ferromagnetic Cu-doped ZnO films: No magnetism at the dopant?

2016

Abstract Relationship between magnetism and structure of Cu-doped ZnO was investigated at macroscopic and microscopic levels. Thin Zn1−xCuxO films (x = 0.02, 0.04, 0.07 and 0.10) were prepared by a pulsed laser deposition and characterized via superconducting quantum interference device (SQUID) magnetometry, high-resolution x-ray diffraction, and Cu K-edge and Zn K-edge x-ray absorption, x-ray linear dichroism and x-ray circular magnetic dichroism spectroscopy. Even though the samples exhibit room-temperature ferromagnetism with magnetization that increases with Cu concentration, we did not detect signatures of local magnetic moments associated with Cu atoms, as evidenced by the lack of any…

Materials scienceCondensed matter physicsDopantMagnetic momentMagnetismMechanical EngineeringMetals and Alloys02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPulsed laser depositionMagnetizationFerromagnetismMechanics of Materials0103 physical sciencesMaterials Chemistry010306 general physics0210 nano-technologyCircular magnetic dichroismWurtzite crystal structureJournal of Alloys and Compounds
researchProduct

Compositional dependence of element-specific magnetic moments in Ni2MnGa films

2009

Element-specific magnetic moments were investigated for epitaxial Ni2Mn1+xGa1−x and (Ni2MnGa)1−x(Co2FeSi)x Heusler films using x-ray absorption spectroscopy and x-ray circular magnetic dichroism in transmission. The epitaxial films of the Ni2MnGa-derived compositions were prepared by dc-sputtering on Al2O3 substrates at 773 K. X-ray diffraction confirms a (1 1 0) oriented growth. An increase in the Mn concentration reduces the magnetic spin moment of both Mn and Ni. An increase in the content of Co2FeSi in the Ni2MnGa compound leads to an increase in the Mn and Ni spin moments and to a decrease in Tm for 5% Co2FeSi and finally to a suppression of the phase transition for 20% Co2FeSi. The or…

Phase transitionAcoustics and UltrasonicsAbsorption spectroscopyMagnetic momentMagnetic circular dichroismChemistryAnalytical chemistryContext (language use)Sputter depositionCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSpin magnetic momentCrystallographyCircular magnetic dichroismJournal of Physics D: Applied Physics
researchProduct